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Let 𝑇 ∈ ℝ𝑑×𝑑×𝑑  be a (symmetric) 3-tensor of the following form:

𝑇 = ෍

𝑖=1

𝑘

𝜆𝑖𝑢𝑖 ⊗ 𝑢𝑖 ⊗ 𝑢𝑖

• Jennrich’s algorithm has good theoretical properties (exact recovery, stability, …) as well as some 

practical concerns (not noise robust in practice, efficiency, …)

• Tensor power method is a more practical approach while also has some theoretical guarantees

• However, there’s still a big gap between theory and practice

→ Theory requires 𝑘 ≤ 𝑑 (under-complete regime)

→ Tensor power methods still seem to work for 𝑑 < 𝑘 < 𝑑1.5, at least when 𝑢𝑖  are random
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Can we find the decomposition of a tensor of rank 𝑘 ≫ 𝑛 in polynomial time?

A more basic question: when is a rank-𝑘 decomposition unique?

• Jennrich, Harshman: when 𝑢𝑖  are linearly independent (𝑘 ≤ 𝑑)

• Kruskal: if every 𝑑 columns of 𝑈 are linearly independent, then the uniqueness holds when 

𝑘 ≤
3

2
𝑑 − 1

However, this result is non-algorithmic

• Chiantini-Ottaviani: Uniqueness of 3-tensors of rank 𝑘 ≤ Τ𝑑2 3 generically

𝑇 = ෍

𝑖=1

𝑘

𝜆𝑖𝑢𝑖 ⊗ 𝑢𝑖 ⊗ 𝑢𝑖

Joseph Kruskal
(1928-2010)

all except a measure zero set
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From computational complexity perspective,

• It is NP-hard to decompose a tensor with rank 𝑘 ≥ 6𝑑 in the worst-case

• Constructing an explicit 3-tensor with rank Ω 𝑑1+𝜖  will imply breakthrough in circuit lower bounds. The 

best-known rank bound for an explicit 3-tensor is only 3𝑑 − 𝑂(log 𝑑)

Today’s plan:

• Algorithm for decomposing higher-order tensors

• Beyond worst-case analysis for over-complete tensor decomposition
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Suppose

𝑇 = ෍

𝑖=1

𝑘

𝜆𝑖𝑢𝑖 ⊗ 𝑢𝑖 ⊗ 𝑢𝑖 ⊗ 𝑢𝑖 ⊗ 𝑢𝑖 ∈ ℝ𝑑×𝑑×𝑑×𝑑×𝑑

𝑇 = ෍

𝑖=1

𝑘

𝜆𝑖vec(𝑢𝑖 ⊗ 𝑢𝑖) ⊗ vec(𝑢𝑖 ⊗ 𝑢𝑖) ⊗ 𝑢𝑖 ∈ ℝ𝑑2×𝑑2×𝑑

Why do higher-order tensors help with decomposition?
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Suppose

𝑇 = ෍

𝑖=1

𝑘

𝜆𝑖𝑢𝑖 ⊗ 𝑢𝑖 ⊗ 𝑢𝑖 ⊗ 𝑢𝑖 ⊗ 𝑢𝑖 ∈ ℝ𝑑×𝑑×𝑑×𝑑×𝑑

𝑇 = ෍

𝑖=1

𝑘

𝜆𝑖vec(𝑢𝑖 ⊗ 𝑢𝑖) ⊗ vec(𝑢𝑖 ⊗ 𝑢𝑖) ⊗ 𝑢𝑖 ∈ ℝ𝑑2×𝑑2×𝑑

Observation:

• Jennrich’s algorithm requires vec 𝑢𝑖 ⊗ 𝑢𝑖  are linearly independent

• vec 𝑢𝑖 ⊗ 𝑢𝑖  is a 𝑑2-dimensional vector, so it is possible to handle even 𝑘 ∼ 𝑑2



Counterexample 
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Hope: vec 𝑢𝑖 ⊗ 𝑢𝑖  is a 𝑑2-dimensional vector, so it is possible to handle even 𝑘 ∼ 𝑑2

Claim.  Let 𝑎𝑖 𝑖∈ 𝑑  and 𝑏𝑖 𝑖∈ 𝑑  be two sets of orthonormal basis for ℝ𝑑. Then,

vec 𝑎𝑖 ⊗ 𝑎𝑖 , vec 𝑏𝑖 ⊗ 𝑏𝑖 𝑖∈ 𝑑

are linearly dependent.

Proof.

Note that 

෍

𝑖

vec(𝑎𝑖 ⊗ 𝑎𝑖) = ෍

𝑖

𝑎𝑖𝑎𝑖
⊤ = 𝐼 = ෍

𝑖

vec(𝑏𝑖 ⊗ 𝑏𝑖)



Counterexample 
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Hope: vec 𝑢𝑖 ⊗ 𝑢𝑖  is a 𝑑2-dimensional vector, so it is possible to handle even 𝑘 ∼ 𝑑2

Claim.  Let 𝑎𝑖 𝑖∈ 𝑑  and 𝑏𝑖 𝑖∈ 𝑑  be two sets of orthonormal basis for ℝ𝑑. Then,

vec 𝑎𝑖 ⊗ 𝑎𝑖 , vec 𝑏𝑖 ⊗ 𝑏𝑖 𝑖∈ 𝑑

are linearly dependent.

• Dimension does not grow multiplicatively in worst case 

• But bad examples are pathological and hard to construct
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NP-hardness results for the worst-case instances are too pessimistic

Average-case analysis: 

• Showing that for a random instance, the probability that it is hard is small

• Examples: 3-SAT, graph coloring, clique finding, compressed sensing, etc

• Random tensor decomposition (𝑢𝑖  sampled from 𝕊𝑑−1)

❖ Chiantini-Ottaviani: Unique decomposition for rank 

𝑘 ≲ 𝑑2

❖ Ma et al, Ding et al: Polynomial time algorithms for 

𝑘~𝑑1.5

easy
hard

Problem instance space
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“However, average-case analysis may be unconvincing as the inputs encountered in many application 

domains may bear little resemblance to the random inputs that dominate the analysis.”

(Spielman-Teng, 2003)

Smoothed analysis

• To explain why Simplex algorithm solves LPs efficiently in practice

• Worst-case instances + Random noise perturbation

Worst-case :

 max
𝑥

𝑇(𝑥)
Average-case:

 avg
𝑟

𝑇(𝑟)
Smoothed analysis:

max𝑥 avg𝑟  𝑇(𝑥 + 𝜖𝑟)



Beyond worst-case analysis

September 4, 2025 10

“However, average-case analysis may be unconvincing as the inputs encountered in many application 

domains may bear little resemblance to the random inputs that dominate the analysis.”

(Spielman-Teng, 2003)

Smoothed analysis

• To explain why Simplex algorithm solves LPs efficiently in practice

• Worst-case instances + Random noise perturbation

hardness
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“However, average-case analysis may be unconvincing as the inputs encountered in many application 

domains may bear little resemblance to the random inputs that dominate the analysis.”

(Spielman-Teng, 2003)

Smoothed analysis

• To explain why Simplex algorithm solves LPs efficiently in practice

• Worst-case instances + Random noise perturbation

easy
hard

Problem 
instance space
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Smoothed analysis model:

• 𝜌 > 0 the smoothing parameter, 𝑘 the rank, ℓ the order of tensor

• Let 𝑢𝑖
′ 𝑗

∈ ℝ𝑑  be an arbitrary vector for 𝑖 ∈ 𝑘 , 𝑗 ∈ ℓ  (picked by nature)

• Sample 𝑢𝑖
𝑗

= 𝑢𝑖
′ 𝑗

+
𝜌

𝑑
𝑔𝑖

𝑗
 for 𝑔𝑖

𝑗
∼ 𝒩 0, 𝐼

• Observe 𝑇 = σ𝑖∈ 𝑘 𝑢𝑖
1 ⊗ ⋯ ⊗ 𝑢𝑖

ℓ + small noise

This is different from elements of 𝑇 being randomly perturbed

• Smoothed model uses 𝒪 𝑘𝑙𝑑  bits of randomness, while randomly perturbing 𝑇 uses 𝒪 𝑑ℓ  bits of 

randomness 

• An efficient algorithm for the element-wise perturbation model would imply a randomized algorithm for 

worst-case instances — which is considered very unlikely.

𝜌-perturbation
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Theorem (Bhaskara-Charikar-Moitra-Vijayraghavan, 2014).

Let 𝑘 ≤ Τ𝑑 Τℓ−1 2 2. There exists an algorithm that takes as input an ℓ-tensor in smoothed 

analysis model and runs in time Τ𝑑 𝜌 𝒪 ℓ  to recover the decomposition, with probability 1 −

Τ1 superpoly 𝑑  over the randomness of 𝑔𝑖
𝑗

.

• This result becomes non-trivial when ℓ ≥ 5

• When 𝜌 is small, it is close to a worst-case instance; when 𝜌 is large, it is close to an average-case 

instance

• The failure probability is important in smoothed analysis, since it essentially describes the fraction of 

points around any given point that are bad
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𝑇′ = ෍

𝑖

vec 𝑢𝑖 ⊗ 𝑣𝑖 ⊗ vec 𝑤𝑖 ⊗ 𝑥𝑖 ⊗ 𝑦𝑖

Stability guarantee of Jennrich’s algorithm 
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𝑇′ = ෍

𝑖

vec 𝑢𝑖 ⊗ 𝑣𝑖 ⊗ vec 𝑤𝑖 ⊗ 𝑥𝑖 ⊗ 𝑦𝑖

Stability guarantee of Jennrich’s algorithm 

• We need to show that vec 𝑢𝑖 ⊗ 𝑣𝑖  are robustly linearly independent
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Khatri-Rao product

• 𝑈, 𝑉 ∈ ℝ𝑑×𝑘

• 𝑈 ⊙ 𝑉 ∈ ℝ𝑑2×𝑘

vec(𝑢1 ⊗ 𝑣1) vec(𝑢𝑘 ⊗ 𝑣𝑘)⋯𝑈⨀𝑉 ≔
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Proposition.  Let 𝑘 ≤ 1 − 𝛿 𝑑ℓ. Given any 𝑈 1 , 𝑈 2 , … , 𝑈 ℓ ∈ ℝ𝑑×𝑘  then for their random 𝜌-

perturbations, we have

Pr 𝜎𝑘
෩𝑈 1 ⊙ ⋯ ⊙ ෩𝑈 ℓ < Τ𝜌 𝑑 𝒪 ℓ ≤ 𝑘 exp −Ωℓ 𝑑

Theorem (Bhaskara-Charikar-Moitra-Vijayraghavan, 2014).

Let 𝑘 ≤ Τ𝑑 Τℓ−1 2 2. There exists an algorithm that takes as input an ℓ-tensor in smoothed 

analysis model and runs in time Τ𝑑 𝜌 𝒪 ℓ  to recover the decomposition, with probability 1 −

Τ1 superpoly 𝑑  over the randomness of 𝑔𝑖,𝑗 .

𝑇 = ෍

𝑖

෥𝑢𝑖
(1)

⊗ ⋯ ⊗ ෤𝑢𝑖
Τℓ−1 2 ⊗ ෤𝑢𝑖

Τℓ−1 2+1 ⊗ ⋯ ⊗ ෤𝑢𝑖
ℓ−1 ⊗ ෤𝑢𝑖

ℓ

෩𝑈 𝑎
𝑖𝑗

≔ 𝑈 𝑎
𝑖𝑗

+
𝜌

𝑑
⋅ 𝒩(0,1)

𝑑 Τℓ−1 2

× 𝑘
𝑑 Τℓ−1 2

× 𝑘
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Proposition.  Let 𝑘 ≤ 1 − 𝛿 𝑑ℓ. Given any 𝑈 1 , 𝑈 2 , … , 𝑈 ℓ ∈ ℝ𝑑×𝑘  then for their random 𝜌-

perturbations, we have

Pr 𝜎𝑘
෩𝑈 1 ⊙ ⋯ ⊙ ෩𝑈 ℓ < Τ𝜌 𝑑 𝒪 ℓ ≤ 𝑘 exp −Ωℓ 𝑑

Proof strategy:

• The least singular value can be hard to handle directly

• We can bound leave-one-out distance as an alternative

෩𝑈 𝑎
𝑖𝑗

≔ 𝑈 𝑎
𝑖𝑗

+
𝜌

𝑑
⋅ 𝒩(0,1)



Leave-one-out distance
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Given a matrix 𝑀 ∈ ℝ𝑑×𝑘, the leave-one-out distance of 𝑀 is

ℓ 𝑀 = min
𝑖∈ 𝑘

Π−𝑖
⊥ 𝑀𝑖

where Π−𝑖
⊥  is the orthogonal projection to span 𝑀𝑗: 𝑗 ≠ 𝑖

The leave-one-out distance is closely related to the least singular value:

Lemma. For any matrix 𝑀 ∈ ℝ𝑑×𝑘, we have

ℓ 𝑀

𝑘
≤ 𝜎min 𝑀 ≤ ℓ 𝑀
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Lemma. For any matrix 𝑀 ∈ ℝ𝑑×𝑘, we have

ℓ 𝑀

𝑘
≤ 𝜎min 𝑀 ≤ ℓ 𝑀

Proof.

• Let 𝑢 be the least singular vector so that 𝑀𝑢 = 𝜎min 𝑀

• Wlog, suppose 𝑢1 is the entry with the largest magnitude, so 𝑢1 ≥
1

𝑘

ℓ 𝑀 ≤ Π−1
⊥ 𝑀1 = inf

𝑣∈span 𝑀2,…,𝑀𝑘

𝑀1 − 𝑣

≤ 𝑀1 + ෍

𝑖>1

𝑢𝑖

𝑢1
𝑀𝑖 =

1

𝑢1
𝑀𝑢 ≤

𝜎min 𝑀

𝑘

• The lemma is then proved

𝑀1
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Proposition.  Let 𝑘 ≤ 1 − 𝛿 𝑑ℓ. Given any 𝑈 1 , 𝑈 2 , … , 𝑈 ℓ ∈ ℝ𝑑×𝑘  then for their random 𝜌-

perturbations, we have

Pr 𝜎𝑘
෩𝑈 1 ⊙ ⋯ ⊙ ෩𝑈 ℓ < Τ𝜌 𝑑 𝒪 ℓ ≤ 𝑘 exp −Ωℓ 𝑑

• Using the lemma, it suffices to prove:

Pr ℓ ෩𝑈 1 ⊙ ⋯ ⊙ ෩𝑈 ℓ < 𝑘 ⋅ Τ𝜌 𝑑 𝒪 ℓ ≤ 𝑘 exp −Ωℓ 𝑑

                                           

  Pr ℓ ෩𝑈 1 ⊙ ⋯ ⊙ ෩𝑈 ℓ < Τ𝜌 𝑑 ℓ ≤ 𝑘 exp −Ωℓ 𝑑
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• Our goal:

ℓ ෩𝑈 1 ⊙ ⋯ ⊙ ෩𝑈 ℓ < Τ𝜌 𝑑 ℓ

• By the definition of the leave-one-out distance, we can consider each column:

Π−𝑖
⊥ ෤𝑢𝑖

1 ⊗ ෤𝑢𝑖
2 ⊗ ⋯ ⊗ ෤𝑢𝑖

ℓ ≤ Τ𝜌 𝑑 ℓ ∀𝑖 ∈ 𝑘

• Both Π−𝑖
⊥  and ෤𝑢𝑖

1 ⊗ ෤𝑢𝑖
2 ⊗ ⋯ ⊗ ෤𝑢𝑖

ℓ  are random, but independent!

Projection lemma.  Let 𝑊 ⊂ ℝ𝑑×ℓ
 be an arbitrary subspace of dimension at least 𝛿𝑑ℓ. Given any 

𝑥1, … , 𝑥ℓ ∈ ℝ𝑑, then their random 𝜌-perturbations ෤𝑥1, … , ෤𝑥ℓ satisfy

Pr Π𝑊 ෤𝑥1 ⊗ ⋯ ⊗ ෤𝑥ℓ ≤ Τ𝜌 𝑑 ℓ ≤ exp −Ω 𝑑

The proposition follows from Projection Lemma + union bound over all columns
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Projection lemma (ℓ = 1). Let 𝑊 ⊂ ℝ𝑑  be a subspace of dimension at least 𝛿𝑑. If ෤𝑢 = 𝑢 +
𝜌

𝑑
𝒩 0, 𝐼 , then

Pr Π𝑊 ෤𝑢 < 𝒪 Τ𝜌 𝑑 ≤ exp −Ω 𝑑

Proof (v1).

• Let 𝑤1, … , 𝑤𝐷  be an orthonormal basis for 𝑊

• Then 

Π𝑊 ෤𝑢 = 𝑤1, ෤𝑢 , … , 𝑤𝐷 , ෤𝑢 ≥ max
𝑖∈ 𝐷

𝑤𝑖 , ෤𝑢

• 𝑤𝑖 , ෤𝑢 = 𝑤𝑖 , 𝑢 +
𝜌

𝑑
𝒩 0,1  are independent Gaussians with arbitrary means and variance 

𝜌2

𝑑
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Fact (Gaussian anti-concentration).  For 𝑔 ∼ 𝒩 0,1  and for any interval 𝐼 ⊂ ℝ of length 𝑡,

Pr 𝑔 ∈ 𝐼 ≤ 𝑂 𝑡

• We have

Pr 𝑤𝑖 , ෤𝑢 < 𝒪 Τ𝜌 𝑑 = Pr
𝑔∼𝒩 0,1

𝑔 − 𝑡 < 𝒪 1 ≤ 𝒪 1

• Thus,

Pr max
𝑖∈ 𝐷

𝑤𝑖 , ෤𝑢 < 𝒪 Τ𝜌 𝑑 ≤ ෑ

𝑖∈ 𝐷

Pr 𝑤𝑖 , ෤𝑢 < 𝒪 Τ𝜌 𝑑 = exp −Ω 𝑑

However, this approach does not generalize to higher order case.
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Lemma (ℓ = 1). Let 𝑊 ⊂ ℝ𝑑  be a subspace of dimension at least 𝛿𝑑. If ෤𝑢 = 𝑢 +
𝜌

𝑑
𝒩 0, 𝐼 , then

Pr Π𝑊 ෤𝑢 < 𝒪 Τ𝜌 𝑑 ≤ exp −Ω 𝑑

Proof (v2).

• Instead of choosing an orthonormal basis, we choose a “row echelon” basis for 𝑊:

➢ All ⋆ ’s ≤ 1

➢ 𝑤𝑖 ≤ 𝑑

➢ Construction is similar to Gaussian elimination 

(permuting the coordinates if needed)

1 ⋆ ⋆ ⋆ ⋆

0 1 ⋆ ⋆ ⋆

0 0 1 ⋆ ⋆

0 0 0 1 ⋆

𝑤1 = [

𝑤2 = [

𝑤3 = [

𝑤4 = [

]

]

]

]

∈ 𝑊

Π𝑊 ෤𝑢 = sup
𝑤∈𝑊: 𝑤 =1

𝑤, ෤𝑢
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• Each 𝑤𝑖  has  a non-negligible component orthogonal to the span of 𝑤𝑖+1, … , 𝑤𝐷

• We will “reveal” 𝑤𝐷 , ෤𝑢 , 𝑤𝐷−1, ෤𝑢 , … , 𝑤1, ෤𝑢  one at a time

• 𝑤𝑖 , ෤𝑢 = 𝑤𝑖 , 𝑢 +
𝜌

𝑑
𝑔𝑖 + σ𝑗>𝑖 𝑤𝑖 𝑗𝑔𝑗

Pr 𝑤𝑖, ෤𝑢 < 𝒪
𝜌

𝑑
 𝑤𝑖+1, ෤𝑢 , … , 𝑤𝐷, ෤𝑢 ≤ sup

𝑡∈ℝ
Pr

𝑔𝑖∼𝒩 0,1

𝜌

𝑑
𝑔𝑖 − 𝑡 ≤ 𝒪

𝜌

𝑑
= 𝒪 1

• Hence,

Pr 𝑤𝑖 , ෤𝑢 < 𝒪 Τ𝜌 𝑑  ∀𝑖 ∈ 𝐷 = exp −Ω 𝑑

• Since 𝑤𝑖 ≤ 𝑑, we get that

Pr Π𝑊 ෤𝑢 ≤ 𝒪 Τ𝜌 𝑑 = exp −Ω 𝑑

We loss a factor of 𝑑, but this approach can generalize to ℓ > 1

“left-over” randomness
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Projection lemma.  Let 𝑊 ⊂ ℝ𝑑×ℓ
 be an arbitrary subspace of dimension at least 𝛿𝑑ℓ. Given any 

𝑥1, … , 𝑥ℓ ∈ ℝ𝑑 , then their random 𝜌-perturbations ෤𝑥1, … , ෤𝑥ℓ satisfy

Pr Π𝑊 ෤𝑥1 ⊗ ⋯ ⊗ ෤𝑥ℓ ≤ Τ𝜌 𝑑 ℓ ≤ exp −Ω 𝑑

Proof strategy:

• We need to construct tensor version of “row echelon” basis 𝑇𝐼  for 𝑊

• Show that 𝑇𝐼 ෤𝑥1, ⋯ , ෤𝑥ℓ  is large with high probability
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()

(1) (3) (4)

(1,1) (1,3) (1,2) (3,1) (4,1) (4,2)

ℓ

∅

𝑑

𝑑 × [𝑑]

1 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 ⋆ 1 ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 1 0 ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 0 0 0

⋆ ⋆ ⋆ ⋆

1 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 0 0 0

⋆ ⋆ ⋆ ⋆

0 0 0 0

1 ⋆ ⋆ ⋆

0 0 0 0

⋆ ⋆ ⋆ ⋆

0 0 0 0

0 1 ⋆ ⋆

post-traversal ordering: 1,1 ≺ 1,3 ≺ 1,2 ≺ 1 ≺ 3,1 ≺ 3 ≺ 4,1 ≺ (4,2) ≺ 4

Index tree

An echelon tree for 𝑊 is an index tree where each leaf 𝐼 is additionally labeled by an element 𝑇𝐼 ∈ 𝑊 
such that
• 𝑇𝐼 𝐼1,…,𝐼ℓ

= 1

• For every 𝐽 ≺ 𝐼, 𝑇𝐼(𝑒𝐽 , : ) = 0

• All ⋆ ’s ≤ 1 𝑇𝐼(𝑒𝑗1
, … , 𝑒𝑗 𝐽

, : , … , : )
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Claim (Echelon tree construction). Let 𝑊 ⊂ ℝ𝑑×ℓ
 be a subspace of dimension at least 𝛿𝑑ℓ. Then, 

there exists an echelon tree for 𝑊 such that every non-leaf node has at least 
𝛿

2ℓ
𝑑 children.

We’ll show that this claim implies the projection lemma for a general ℓ > 1

• 𝑇𝐼 𝐹 ≤ 𝑑 Τℓ 2 for every leaf 𝐼. So it suffices to show that 𝑇𝐼 ෤𝑥1, … , ෤𝑥ℓ ≥ Τ𝜌 𝑑
ℓ
 for some 𝐼 w.h.p.

• We will fix ෤𝑥ℓ, ෤𝑥ℓ−1, … , ෤𝑥1 one at a time, and simultaneously reduce the height of the tree by 1

𝑇𝐼1
𝑇𝐼2

𝑇𝐼3

𝑇𝐽 ≔ arg max 𝑇 𝑒𝐽

𝑇 = 𝑇𝐼 : , ෤𝑥ℓ
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Claim. If we start with an 𝑥-large echelon tree, then the next echelon tree is 
𝜌

𝑑
𝑥-large 

• For a fixed node 𝐽 of level ℓ − 1, we want to prove that there exists a child node 𝐼 such that 

𝑇𝐼 𝑒𝐽 , ෤𝑥ℓ ≥
𝜌

𝑑
𝑥

• By the previous claim, 𝐽 has 𝑚 ≥
𝛿

2ℓ
𝑑 children, with labels:

𝐽, 𝑖1 , 𝐽, 𝑖2 , … , 𝐽, 𝑖𝑚

• Then, it is almost the same as baby lemma for ℓ = 1 and 𝑑′ = 𝑚. Thus, we have

Pr ∀𝑗 ∈ 𝑚 : 𝑇𝐼𝑗
𝑒𝐽 , ෤𝑥ℓ ≤ Τ𝜌𝑥 𝑑 ≤ exp −Ω 𝑚 = exp −Ω 𝑑

• There are at most 𝑑(ℓ−1) nodes at level ℓ − 1. By union bound, w.p. ≥ 1 − 𝑑ℓ−1 exp −Ω 𝑑 , the next 

echelon tree is 
𝜌

𝑑
𝑥-large, and the claim is proved

We say an echelon tree is 𝑥-large if 
𝑇𝐼 𝑒𝐼 ≥ 𝑥 for every leaf 𝐼
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Claim. If we start with an 𝑥-large echelon tree, then the next echelon tree is 
𝜌

𝑑
𝑥-large 

Inductively, this implies that with probability at least

1 − 1 + 𝑑 + ⋯ + 𝑑ℓ−1 exp −Ω 𝑑 ≥ 1 − 𝑑ℓ exp −Ω 𝑑 ,

there exists some 𝐼 in the echelon tree (which is also in 𝑊) such that 

𝑇𝐼 ෤𝑥1, … , ෤𝑥ℓ ≥ Τ𝜌 𝑑
ℓ

Hence,

Pr Π𝑊 ෤𝑥1 ⊗ ⋯ ⊗ ෤𝑥ℓ ≤ Τ𝜌 𝑑 ℓ ≤ exp −Ω 𝑑

which proves the projection lemma
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()

(1) (3) (4)

(1,1) (1,3) (1,2) (3,1) (4,1) (4,2)

1 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 ⋆ 1 ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 1 0 ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 0 0 0

⋆ ⋆ ⋆ ⋆

1 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 0 0 0

⋆ ⋆ ⋆ ⋆

0 0 0 0

1 ⋆ ⋆ ⋆

0 0 0 0

⋆ ⋆ ⋆ ⋆

0 0 0 0

0 1 ⋆ ⋆

𝑒1
⊤𝑇𝐼 ෤𝑥2 𝑒3

⊤𝑇𝐼 ෤𝑥2 𝑒4
⊤𝑇𝐼 ෤𝑥2

Baby lemma × 3

ℓ = 2 case
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()

(1) (3) (4)

(1,3) (3,1) (4,2)

0 ⋆ 1 ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 0 0 0

⋆ ⋆ ⋆ ⋆

1 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 0 0 0

⋆ ⋆ ⋆ ⋆

0 0 0 0

0 1 ⋆ ⋆

𝑒1
⊤𝑇1,3 ෤𝑥2 𝑒3

⊤𝑇3,1 ෤𝑥2 𝑒4
⊤𝑇4,2 ෤𝑥2 ≥

𝜌

𝑑

ℓ = 2 case
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()

(1) (3) (4)

⋄

⋆

⋆

⋆

𝑇1,3 ෤𝑥2 𝑇3,1 ෤𝑥2 𝑇4,2 ෤𝑥2

0

⋆

⋄

⋆

0

⋆

0

⋄

෤𝑥1
⊤𝑇3,1 ෤𝑥2 ≥

𝜌

𝑑
⋅

𝜌

𝑑
=

𝜌2

𝑑
Baby lemma:

ℓ = 2 case
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Claim (Echelon tree construction). Let 𝑊 ⊂ ℝ𝑑×ℓ
 be a subspace of dimension at least 𝛿𝑑ℓ. Then, there 

exists an echelon tree for 𝑊 such that every non-leaf node has at least 
𝛿

2ℓ
𝑑 children.

Claim (stronger version). Let 𝑊 ⊂ ℝ𝑑1×⋯×𝑑ℓ  be a subspace. Let 𝛼 ∈ 0,1  be such that 

1 − 𝛼 ℓ ≥ 1 − dim Τ𝑊 𝑑1 ⋯ 𝑑ℓ

Then, there exists an echelon tree for 𝑊 such that every node at level 𝑖 has at least 𝛼𝑛𝑖  children.
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Claim (stronger version). Let 𝑊 ⊂ ℝ𝑑1×⋯×𝑑ℓ  be a subspace. Let 𝛼 ∈ 0,1  be such that 

1 − 𝛼 ℓ ≥ 1 − dim Τ𝑊 𝑑1 ⋯ 𝑑ℓ

Then, there exists an echelon tree for 𝑊 such that every node at level 𝑖 has at least 𝛼𝑛𝑖  children.

Proof by induction over the height ℓ

• ℓ = 1 is trivial (as proved in the baby lemma)

• Suppose ℓ − 1 holds. To “grow” one more level, we first flatten the first two dimensions, i.e.,

𝑊 ≅ 𝑊′ ⊂ ℝ𝑑1𝑑2×𝑑3×⋯×𝑑ℓ

• Level-1 has ≥ 𝛼𝑑1𝑑2 nodes (by induction hypothesis)

𝑑 = 2

ℓ − 1 levels

(1,2) (2,2)(1,1)
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Claim (stronger version). Let 𝑊 ⊂ ℝ𝑑1×⋯×𝑑ℓ  be a subspace. Let 𝛼 ∈ 0,1  be such that 

1 − 𝛼 ℓ ≥ 1 − dim Τ𝑊 𝑑1 ⋯ 𝑑ℓ

Then, there exists an echelon tree for 𝑊 such that every node at level 𝑖 has at least 𝛼𝑛𝑖  children.

Proof by induction over the height ℓ

• ℓ = 1 is trivial (as proved in the baby lemma)

• Suppose ℓ − 1 holds. To “grow” one more level, we first flatten the first two dimensions, i.e.,

𝑊 ≅ 𝑊′ ⊂ ℝ𝑑1𝑑2×𝑑3×⋯×𝑑ℓ

• Level-1 has ≥ 𝛼𝑑1𝑑2 nodes (by induction hypothesis). 

At least 𝛼𝑑2 of them has the same first coordinate (by pigeonhole principle)

(1,2) (2,2)(1,1)

𝑑 = 2
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Claim (stronger version). Let 𝑊 ⊂ ℝ𝑑1×⋯×𝑑ℓ  be a subspace. Let 𝛼 ∈ 0,1  be such that 

1 − 𝛼 ℓ ≥ 1 − dim Τ𝑊 𝑑1 ⋯ 𝑑ℓ

Then, there exists an echelon tree for 𝑊 such that every node at level 𝑖 has at least 𝛼𝑛𝑖  children.

Proof by induction over the height ℓ

• ℓ = 1 is trivial (as proved in the baby lemma)

• Suppose ℓ − 1 holds. To “grow” one more level, we first flatten the first two dimensions, i.e.,

𝑊 ≅ 𝑊′ ⊂ ℝ𝑑1𝑑2×𝑑3×⋯×𝑑ℓ

• Level-1 has ≥ 𝛼𝑑1𝑑2 nodes (by induction hypothesis). 

At least 𝛼𝑑2 of them has the same first coordinate (by pigeonhole principle)

• Remove the other nodes at level-1

(1,2) (2,2)(1,1)

𝑑 = 2
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Claim (stronger version). Let 𝑊 ⊂ ℝ𝑑1×⋯×𝑑ℓ  be a subspace. Let 𝛼 ∈ 0,1  be such that 

1 − 𝛼 ℓ ≥ 1 − dim Τ𝑊 𝑑1 ⋯ 𝑑ℓ

Then, there exists an echelon tree for 𝑊 such that every node at level 𝑖 has at least 𝛼𝑛𝑖  children.

Proof by induction over the height ℓ

• ℓ = 1 is trivial (as proved in the baby lemma)

• Suppose ℓ − 1 holds. To “grow” one more level, we first flatten the first two dimensions, i.e.,

𝑊 ≅ 𝑊′ ⊂ ℝ𝑑1𝑑2×𝑑3×⋯×𝑑ℓ

• Level-1 has ≥ 𝛼𝑑1𝑑2 nodes (by induction hypothesis). 

At least 𝛼𝑑2 of them has the same first coordinate (by pigeonhole principle)

• Remove the other nodes at level-1

• Extract the first coordinate
(1,2)(1,1)

(1)
This node has ≥ 𝛼𝑑2 
children 𝑑 = 2
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Claim (stronger version). Let 𝑊 ⊂ ℝ𝑑1×⋯×𝑑ℓ  be a subspace. Let 𝛼 ∈ 0,1  be such that 

1 − 𝛼 ℓ ≥ 1 − dim Τ𝑊 𝑑1 ⋯ 𝑑ℓ

Then, there exists an echelon tree for 𝑊 such that every node at level 𝑖 has at least 𝛼𝑛𝑖  children.

• Consider the subspace 

𝑊1 ≔ 𝑇 ∈ 𝑊 𝑇 𝑒𝑖1
, : , … , : = 0 ≅ 𝑊1

′ ⊂ ℝ 𝑑1−1 𝑑2×𝑑3×⋯×𝑑ℓ

• dim 𝑊1 = dim 𝑊 − 𝑑2 ⋯ 𝑑ℓ and

1 −
dim 𝑊1

𝑑1 − 1 𝑑2 ⋯ 𝑑ℓ
= 1 −

dim 𝑊 − 𝑑2 ⋯ 𝑑ℓ

𝑑1 − 1 𝑑2 ⋯ 𝑑ℓ

=
1 − Τdim 𝑊 𝑑1 ⋯ 𝑑ℓ

1 − Τ1 𝑑1
≤

1 − 𝛼 ℓ

1 − Τ1 𝑑1
≤ 1 − 𝛼 ℓ−1

• By induction hypothesis, there is an echelon tree for 𝑊1
𝑖1

𝑑2 ⋯ 𝑑ℓ 
constraints
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Claim (stronger version). Let 𝑊 ⊂ ℝ𝑑1×⋯×𝑑ℓ  be a subspace. Let 𝛼 ∈ 0,1  be such that 

1 − 𝛼 ℓ ≥ 1 − dim Τ𝑊 𝑑1 ⋯ 𝑑ℓ

Then, there exists an echelon tree for 𝑊 such that every node at level 𝑖 has at least 𝛼𝑛𝑖  children.

• Consider the subspace 

𝑊1 ≔ 𝑇 ∈ 𝑊 𝑇 𝑒𝑖1
, : , … , : = 0 ≅ 𝑊1

′ ⊂ ℝ 𝑑1−1 𝑑2×𝑑3×⋯×𝑑ℓ

• dim 𝑊1 = dim 𝑊 − 𝑑2 ⋯ 𝑑ℓ and

1 −
dim 𝑊1

𝑑1 − 1 𝑑2 ⋯ 𝑑ℓ
= 1 −

dim 𝑊 − 𝑑2 ⋯ 𝑑ℓ

𝑑1 − 1 𝑑2 ⋯ 𝑑ℓ

=
1 − Τdim 𝑊 𝑑1 ⋯ 𝑑ℓ

1 − Τ1 𝑑1
≤

1 − 𝛼 ℓ

1 − Τ1 𝑑1
≤ 1 − 𝛼 ℓ−1

• By induction hypothesis, there is an echelon tree for 𝑊1

• Repeating the previous argument, we obtain the second subtree:

𝑖1
𝑖2
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Claim (stronger version). Let 𝑊 ⊂ ℝ𝑑1×⋯×𝑑ℓ  be a subspace. Let 𝛼 ∈ 0,1  be such that 

1 − 𝛼 ℓ ≥ 1 − dim Τ𝑊 𝑑1 ⋯ 𝑑ℓ

Then, there exists an echelon tree for 𝑊 such that every node at level 𝑖 has at least 𝛼𝑛𝑖  children.

• Suppose we apply this procedure for 𝑡 times

• The subspace becomes

𝑊𝑡+1 ≔ 𝑇 ∈ 𝑊 𝑇 𝑒𝑖𝑗
, : , … , : = 0 ∀𝑗 ∈ 𝑡

≅ 𝑊𝑡+1
′ ⊂ ℝ 𝑑1−𝑡 𝑑2×𝑑3×⋯×𝑑ℓ

• And we can check the condition:

1 −
dim 𝑊𝑡+1

𝑑1 − 𝑡 𝑑2 ⋯ 𝑑ℓ
=

1 − Τdim 𝑊 𝑑1 ⋯ 𝑑ℓ

1 − Τ𝑡 𝑑1
≤

1 − 𝛼 ℓ

1 − Τ𝑡 𝑑1
≤ 1 − 𝛼 ℓ−1

• Hence, we can add new subtrees until 𝑡 > 𝛼𝑑1. Then, the root has 𝛼𝑑1 children and it is an echelon tree 

of height ℓ    

𝑖1 𝑖2 𝑖𝑡

⋯
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