CS 59300 - Algorithms for Data Science
Classical and Quantum approaches

Lecture 3 (09/04)
Tensor Methods (l11)

https:Ilruizhezhang.comlcoui’se fall 2025.html

Slides are based on Sitan Chen’s lecture



https://ruizhezhang.com/course_fall_2025.html

Recap: under-complete tensor decomposition

Let T € R2X%4 pe a (symmetric) 3-tensor of the following form:

k
I = Zﬂiui R u; Qu;
i=1
Jennrich’s algorithm has good theoretical properties (exact recovery, stability, ...) as well as some
practical concerns (not noise robust in practice, efficiency, ...)

Tensor power method is a more practical approach while also has some theoretical guarantees

However, there’s still a big gap between theory and practice
> Theory requires k < d (under-complete regime)

> Tensor power methods still seem to work for d < k < d*-°, at least when {u;} are random
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Over-complete tensor decomposition . i P

Can we find the decomposition of a tensor of rank k >> n in polynomial time?
A more basic question: when is a rank-k decomposition unique?
Jennrich, Harshman: when {u;} are linearly independent (k < d)

- Kruskal: if every d columns of U are linearly independent, then the uniqueness holds when

4

k<3d 1
-2

However, this result is non-algorithmic

Chiantini-Ottaviani: Uniqueness of 3-tensors of rank k < d? /3 generically

all except a measure zero set

Joseph Kruskal
(1928-2010)
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Over-complete tensor decomposition

From computational complexity perspective,
It is NP-hard to decompose a tensor with rank k = 6d in the worst-case

Constructing an explicit 3-tensor with rank Q(d**€) will imply breakthrough in circuit lower bounds. The
best-known rank bound for an explicit 3-tensor is only 3d — O(log d)

Today’s plan:

Algorithm for decomposing higher-order tensors

Beyond worst-case analysis for over-complete tensor decomposition
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Higher-order tensors decomposition

Suppose

k
T = 7 Ay X U; (% U; 0%9) U; R u; € RAxdxdxdxd
| | ) | )
i=1 ! !

)

k
T = z/livec(ui Q) Q vec(y; @ u;) @ u; € RI“xd*xd
i=1

Why do higher-order tensors help with decomposition?
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Higher-order tensors decomposition

Suppose

k
T = 7 Ai}fli X U; |®|ui 0%9) ui.® u; € RAxdxdxdxd
i=1 ! !

k
T = Z/livec(ui Q) Q vec(y; @ u;) @ u; € RI“xd*xd
i=1

Observation:
Jennrich’s algorithm requires {vec(u; @ u;)} are linearly independent

vec(u; ® u;) is a d*-dimensional vector, so it is possible to handle even k ~ d*
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Counterexam{pie

Hope: vec(u; ® u;) is a d?-dimensional vector, so it is possible to handle even k ~ d*

Claim. Let{a;};e[q; and {b;}ic[q] be two sets of orthonormal basis for R%. Then,
tvec(a; ® a;),vec(b; @ b;)}ie[q]

are linearly dependent.

Proof.

Note that

zvec(ai R a;) = 2 aal =1= Z vec(b; @ b;)

l l l
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Counterexam{pie

Hope: vec(u; ® u;) is a d?-dimensional vector, so it is possible to handle even k ~ d*
Claim. Let{a;};e[q; and {b;}ic[q] be two sets of orthonormal basis for R%. Then,

tvec(a; ® a;),vec(b; @ b;)}ie[q]

are linearly dependent.

Dimension does not grow multiplicatively in worst case

But bad examples are pathological and hard to construct
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Beyond worst-case analysis

NP-hardness results for the worst-case instances are too pessimistic
Average-case analysis:
Showing that for a random instance, the probability that it is hard is small

Examples: 3-SAT, graph coloring, clique finding, compressed sensing, etc

Random tensor decomposition (u; sampled from $¢~1)

< Chiantini-Ottaviani: Unique decomposition for rank
k < d?

< Ma et al, Ding et al: Polynomial time algorithms for easy hard

k~d1'5

Problem instance space
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Beyond worst-case analysis

“However, average-case analysis may be unconvincing as the inputs encountered in many application
domains may bear little resemblance to the random inputs that dominate the analysis.”

(Spielman-Teng, 2003)

Smoothed analysis
- To explain why Simplex algorithm solves LPs efficiently in practice

- Worst-case instances + Random noise perturbation

Worst-case : Smoothed analysis: Average-case:
max T (x) max, avg, T (x + er) avgT(r)
X r
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Beyond worst-case analysis

“However, average-case analysis may be unconvincing as the inputs encountered in many application
domains may bear little resemblance to the random inputs that dominate the analysis.”

(Spielman-Teng, 2003)

Smoothed analysis
- To explain why Simplex algorithm solves LPs efficiently in practice

- Worst-case instances + Random noise perturbation

y

hardness

L
A 4’% A, &
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Beyond worst-case analysis

“However, average-case analysis may be unconvincing as the inputs encountered in many application
domains may bear little resemblance to the random inputs that dominate the analysis.”

(Spielman-Teng, 2003)

Smoothed analysis
- To explain why Simplex algorithm solves LPs efficiently in practice

- Worst-case instances + Random noise perturbation

!Droblem easy
instance space hard
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Smoothed analysis of tensor decomposition

Smoothed analysis model:

p > 0 the smoothing parameter, k the rank, € the order of tensor

Let u{(j) € R% be an arbitrary vector for i € [k],j € [£] (picked by nature)

() ()

Sampleu;”” =u; "~ + \/%gi(j) for gi(j) ~N(0,1) p-perturbation

Observe T = X;crx] ugl) R ul@ + small noise

This is different from elements of T being randomly perturbed

Smoothed model uses O (kld) bits of randomness, while randomly perturbing T uses O(d‘)) bits of
randomness

An efficient algorithm for the element-wise perturbation model would imply a randomized algorithm for
worst-case instances — which is considered very unlikely.
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Main theorem of this lecture

Theorem (Bhaskara-Charikar-Moitra-Vijayraghavan, 2014).

Let k < dl(’?_l)/ZJ/Z. There exists an algorithm that takes as input an £-tensor in smoothed
analysis model and runs in time (d/p)o({)) to recover the decomposition, with probability 1 —

1/superpoly(d) over the randomness of {gi(j)}.

This result becomes non-trivial when £ > 5

When p is small, it is close to a worst-case instance; when p is large, it is close to an average-case
instance

The failure probability is important in smoothed analysis, since it essentially describes the fraction of
points around any given point that are bad
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Using higher order tensors

T' = z vec(u; @ v;) Q vec(w; ® x;) Q y;

l

Stability guarantee of Jennrich’s algorithm

Theorem 3.1. Suppose we are given tensor T =T + E € R™"%P where T has a decomposition
T = Zf:l u; @ v; @ w; satisfying the following conditions:

1. Matrices U = (u; : i € [k]),V = (v; : i € [k]) have condition number at most k,

2. For alli # j, Iy — iy llz 2 0.

[Jwill
3. Each entry of E is bounded by ||T||r - €/poly(k, max {n,m,p}, 5).

Then the Algorithm 1 on input T runs in polynomial time and returns a decomposition { (@, o, ;) : i € [k] }
s.t. there is a permutation 7 : [k] — k| with

Vi€ k], [U®0; @ Wi — Uy @ Ve @ weyllp < el|T r
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Using higher order tensors

T' = z vec(u; @ v;) Q vec(w; Q x;) Q y;

l

Stability guarantee of Jennrich’s algorithm

We need to show that {vec(u; & v;)} are robustly linearly independent
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Using higher order tensors

Khatri-Rao product

U,V € R¥*k /

UQV e R %k

U@V — vec(u; ® vq)
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Main step

~ P
(U(a))ij = (U(a))ij +\/_H - NV (0,1)

Proposition. Let k < (1 — §)d?. Givenany UV, U@ . U® € RE*k then for their random p-
perturbations, we have

Pr{op (T © - O T®) < (p/d)°?] < k exp(—Qp(d))

Theorem (Bhaskara-Charikar-Moitra-Vijayraghavan, 2014).

Let k < dW_l)/ZJ/Z. There exists an algorithm that takes as input an £-tensor in smoothed

analysis model and runs in time (d/p)om to recover the decomposition, with probability 1 —
1/superpoly(d) over the randomness of {g; ; }.

T — ;‘ 1\710) R R ﬁlg(f—l)/za ®\ﬁ§(e—1)/z+1> R ® ﬁgf—l) ® al@
i | |
dle-1/2] dl¢-1/2]
X k

X k
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Main step
r7a — a p
(0@),, = (U9),, +\/E°N(O,1)

Proposition. Let k < (1 — §)d?. Givenany UV, U@ . U® € RE*k then for their random p-
perturbations, we have

Pr{op (T © - O T®) < (p/d)°?] < k exp(—Qp(d))

Proof strategy:
The least singular value can be hard to handle directly

We can bound leave-one-out distance as an alternative
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Leave-one-out distance

Given a matrix M € R%*X the leave-one-out distance of M is

¢(M) = min |15 M |

where I1Z; is the orthogonal projection to span({Mj:j + l})

The leave-one-out distance is closely related to the least singular value:

Lemma. For any matrix M € R%**, we have

@ = O_min(M) < E(M)

Vi
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Leave-one-out distance

Lemma. For any matrix M € R%*%, we have

IR——

Proof.

Let u be the least singular vector so that || Mul|| = g, (M)

Wlog, suppose u, is the entry with the largest magnitude, so |u,| = —

\/_
< 1 — 1 —
t(M) = ”H_lMl” vESpanl(II}/If,...,M )”]VI1 vl
Opmin (M)
M +z =—||Mu|| < Jmin
' H vk

The lemma is then proved
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Main step

Proposition. Let k < (1 — §)d?. Givenany UV, U@ . U® € RE*k then for their random p-
perturbations, we have

Pr{op (T © - O T®) < (p/d)°?] < k exp(—Qp(d))

Using the lemma, it suffices to prove:

Pr[£(T® @ - © U®) <k - (p/d)°P] < k exp(—Q(d))

Pr[£(TD © - © UP) < (p/d)*] < k exp(—Q(d))
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Our goal:
{)(U(l) OO0 ﬁ(%’)) < (p/d)"

By the definition of the leave-one-out distance, we can consider each column:
~ ~ ~(P .
HHfi (ugl) X ugz) XX ul( ))H < (p/d)* Vielk]

« Both Hfi and ﬁgl) X ﬁl@ R R ﬂl@ are random, but independent!

¢ : : : :
Projection lemma. Let W c R be an arbitrary subspace of dimension at least §d*. Given any
X1, ..., Xy € R?, then their random p-perturbations %4, ..., ¥, satisfy

Pr(|IT, (%, ® - ® %)l < (p/d)¢| < exp(—Q(d))

The proposition follows from Projection Lemma + union bound over all columns
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Baby lemma

Projection lemma (£ = 1). Let W < R? be a subspace of dimension at least 6d. If i = u +

P
\/EN(O’ 1), then

Pr(|IMy il < 0(p/d)] < exp(—Q(d))

Proof (v1).
Let wy, ..., Wp be an orthonormal basis for W
Then
Iy @l = 1wy, @), ..., wp, TN = max [{w;, 0)|

p2

(w;, 1) = (w;,u) + %N(O,l) are independent Gaussians with arbitrary means and variance —~
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Baby lemma

Fact (Gaussian anti-concentration). For g ~ N (0,1) and for any interval I € R of length ¢,
Prlg € I] < 0(t)

We have

Thus,

Pr lrg[ag]( ] I(—Q(d))

However, this approach does not generalize to higher order case.
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Baby lemma

Lemma (£ = 1). Let W < R? be a subspace of dimension at least §d. If &i = u + %N(O, 1), then

\/_
Pr(|IMy, @l < 0(p/d)] < exp(—Q(d))

Proof (v2). Myl = sup  Kw, @)
wew:||lw||=1
Instead of choosing an orthonormal basis, we choose a “row echelon” basis for W

> Al [*x['s< 1
> lwill <Vd wi=[1 * * % x|

> Construction is similar to Gaussian elimination w, =
(permuting the coordinates if needed)

—eWw

S
w
Il
) - -
-
p—
*
*
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Baby lemma

Each w; has a non-negligible component orthogonal to the span of w; 4, ...,

|II

We will “revea

(wp, 1), (Wp_q, U), ..., (wy, 1i) one at a time

(w;, ) = (w;,u) + % + ) j>i(Wi)]'gj)

“left-over” randomness

Pr[|<wl,u>|<o( )|<wl+1,u> (wp, )] < sup [ g —tl <

Hence,

teR QLNN(O 1)

Pr|[{w;, @) < 0(p/Vd) Vi € [D]| = exp(— )

Since ||w; |l <Vd, we get that

Pr{liTy il < 0(p/d)] = exp(—Q(d))

We loss a factor of Vd, but this approach can generalizeto £ > 1
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ws=1[0
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o —
= >*

W4=[O
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General case

. ¢ : : : :
Projection lemma. Let W c R be an arbitrary subspace of dimension at least §d*. Given any
X4, ..., Xy € R?, then their random p-perturbations %4, ..., &, satisfy

Pr{iy, (% ® - ® %)l < (p/d)*] < exp(—Q(d))

Proof strategy:
We need to construct tensor version of “row echelon” basis {T,} for W

Show that |T; (X, -+, X,)| is large with high probability
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/O -\ @
(3) Y

4 (D) (4) |d]

ety

Index tree

QO  ldx[d]

(1,1) (1,3) (1,2) (3,1) (4,1) (4,2)
1 [* | *x [* O [ [1 |* 0110 | 0Ol0(0{O 010(01{0 010101{0
* | * | *x | *% *x | % [ % | % * | % [ % | % * | % [ % | % *x | *x [ *x | % *x | x | x| %
* | * | x [ % * | *x [*x | % * | % [x | % 1 [x | % [ % 0101010 0101010
* | *x | % [ % * | % | % | % * | % | *x [x * | % [ % | % 1T 1% [ x| % 011 |x |x

post-traversal ordering: (1,1) < (1,3) <(1,2) < (1) <31) <) <41) < 42) < (4)

An echelon tree for W is an index tree where each leaf I is additionally labeled by an element T, € W
such that

. (TI)Il,...,Ig =1

- Forevery] <I,Ti(e,:) =0

« Al [x|'s<1 . .
| | Tl(ejl,,ejljl,,,)
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Proof of the projection lemma via echelon tree

: : ¢ , :
Claim (Echelon tree construction). Let W C R be a subspace of dimension at least §d*. Then,

: 6 :
there exists an echelon tree for W such that every non-leaf node has at least 7 d children.

We'll show that this claim implies the projection lemma for a general £ > 1

y
IT; |l < d?/? for every leaf I. So it suffices to show that |T;(%;, ..., ;)| = (p/Vd) for some I w.h.p.

We will fix Xy, Xp_1, ..., X1 one at a time, and simultaneously reduce the height of the tree by 1

ﬁ T; = arg max |T(e])|

@ v T =T,(:, %)
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Proof of the projection lemma via echelaB.tree wree is x-large if

|T;(e;)| = x for every leaf I

Claim. If we start with an x-large echelon tree, then the next echelon tree is % x-large

For a fixed node | of level £ — 1, we want to prove that there exists a child node I such that

|T,(e],3?{))| > ix

Vd

By the previous claim, f hasm > %d children, with labels:

(Ir il); (]; i2); SRR (]r lm)

Then, it is almost the same as baby lemma for £ = 1 and d’ = m. Thus, we have
Pr [Vj €[ ‘T, (e],x{))‘ < px/\/_] < exp(—Q(m)) = exp(—Q(d))

There are at most d~1 nodes at level £ — 1. By union bound, w.p. > 1 — d?~! exp(—Q(d)), the next

echelon tree is %x—large, and the claim is proved
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Proof of the projection lemma via echelon tree

Claim. If we start with an x-large echelon tree, then the next echelon tree is % x-large

Inductively, this implies that with probability at least
1—(1+d+-+d)exp(—Q(d) =1 - d’exp(—Q(d)),
there exists some I in the echelon tree (which is also in W) such that

1T, (%, ..., %p)| = (p/\/a){)

Hence,
Pr[|IlT, (%, ® - ® %) < (p/d)?] < exp(—(d))

which proves the projection lemma
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{ = 2 case

(4)

September 4, 2025

LD 13 (12 (31
1 [x | % | * 0[x |1 | 0110 [ 0]01{O0
* [ % | x | * [ *x | % | % N T * [ * [ *
* [ % | x | * * [ *x | % | % * [ % [ x | * 1 | % | *
* [ % | x | % * [ *x | % | % * | % [ x | * | x [ *
T ~ ~
e1 T1x; |33TTIX2|

32

Baby lemma X 3

(4,1) (4,2)
0(01]0{0 0101]0{O0
* | *x | % | % * | % | % | %
0({0(0]0 0(0101]0
1 1% [ x| % 0111 | |*
|e:}r Tlle



{ = 2 case
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(4,2)

* | O [ * | O
* O * | O

o * | O

€4 T4 zle
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{ = 2 case

Baby lemma:
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Ty 3%, T51X; Ty X,
X1 T; 1 %,| = b2 ='0—2
1 3,142 = \/E \/E d
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Constructing the echelon tree



Echelon tree construction

: : ¢ . ,
Claim (Echelon tree construction). Let W C RY be a subspace of dimension at least §d*. Then, there

. 5 .
exists an echelon tree for W such that every non-leaf node has at least v d children.

Claim (stronger version). Let W c R91*"X4d¢ he 3 subspace. Let ¢ € (0,1] be such that
(1-a)>1—-dim(W)/d,-d,

Then, there exists an echelon tree for W such that every node at level i has at least an; children.
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Claim (stronger version). Let W c R%1%"X@¢ he 3 subspace. Let @ € (0,1] be such that

1-a)>1—-dim(W)/d,--d,

Then, there exists an echelon tree for W such that every node at level i has at least an; children.

Proof by induction over the height £
£ = 1 is trivial (as proved in the baby lemma)

Suppose £ — 1 holds. To “grow” one more level, we first flatten the first two dimensions, i.e.,
~ didyXdgx--xd
W ~ WI C R 102 XAz XX {J'

£ — 1'Ievels
Level-1 has = ad,d, nodes (by induction hypothesis)

/T\ P

(L) (1,2) 2.2)

A A A
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Claim (stronger version). Let W c R%1%"X@¢ he 3 subspace. Let @ € (0,1] be such that

1-a)>1—-dim(W)/d,--d,

Then, there exists an echelon tree for W such that every node at level i has at least an; children.

Proof by induction over the height £
£ = 1 is trivial (as proved in the baby lemma)

Suppose £ — 1 holds. To “grow” one more level, we first flatten the first two dimensions, i.e.,
W ~ Wl C Rd1d2Xd3X"°ng

Level-1 has = ad;d, nodes (by induction hypothesis).
At least ad, of them has the same first coordinate (by pigeonhole principle)

/T\ P

(L) (1.2)( 2,2)

A A A
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Claim (stronger version). Let W c R%1%"X@¢ he 3 subspace. Let @ € (0,1] be such that

1-a)>1—-dim(W)/d,--d,

Then, there exists an echelon tree for W such that every node at level i has at least an; children.

Proof by induction over the height £
£ = 1 is trivial (as proved in the baby lemma)

Suppose £ — 1 holds. To “grow” one more level, we first flatten the first two dimensions, i.e.,
W ~ Wl C Rd1d2Xd3X"°ng

Level-1 has = ad;d, nodes (by induction hypothesis).
At least ad, of them has the same first coordinate (by pigeonhole principle)

/T\ g

(L) (L (1,2) (L 2,2)

A A A

Remove the other nodes at level-1
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Claim (stronger version). Let W c R%1%"X@¢ he 3 subspace. Let @ € (0,1] be such that

1-a)>1—-dim(W)/d,--d,

Then, there exists an echelon tree for W such that every node at level i has at least an; children.

Proof by induction over the height £
£ = 1 is trivial (as proved in the baby lemma)

Suppose £ — 1 holds. To “grow” one more level, we first flatten the first two dimensions, i.e.,
W ~ Wl C Rd1d2Xd3X"°ng

Level-1 has = ad;d, nodes (by induction hypothesis).
At least ad, of them has the same first coordinate (by pigeonhole principle)

Remove the other nodes at level-1 b This node has > ad,

(1) children ¢b d=2
Extract the first coordinate /v\
1)@ (1.2) @

A A

September 4, 2025 40



Claim (stronger version). Let W c R%1%"X@¢ he 3 subspace. Let @ € (0,1] be such that

1-a)>1—-dim(W)/d,--d,

Then, there exists an echelon tree for W such that every node at level i has at least an; children.

Consider the subspace

Wi = {T (S WlT(eil,:, ___,;) — ()} — Wl' - R(dl—l)dzxd3x---xd{)

dim(W;) = dim(W) — d, ---d, and

dimW,)  __ dim(W) —d; -d,
(d1_1)d2”‘d€ B (d1_1)d2”’d€

_ 1-dim(W)/d, ---d, - (1-—a)f

B 1-1/d, ~1-1/d,

By induction hypothesis, there is an echelon tree for W; l(il)

d, - dyp
constraints

<(1-a)1
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Claim (stronger version). Let W c R%1%"X@¢ he 3 subspace. Let @ € (0,1] be such that

1-a)>1—-dim(W)/d,--d,

Then, there exists an echelon tree for W such that every node at level i has at least an; children.

Consider the subspace

W, ={T eW|T(e;,,:,..,:) = 0} = W/ c Rld1-Ddoxdsx-xdy
dim(W;) = dim(W) — d, ---d, and
dim(WW;) B dim(W) —d, --- d,

(d1_1)d2”‘d€ =1 (d1_1)d2”’d€
_ 1-dim(W)/d, ---d, - (1-—a)f -
B 1-1/d, ~1-1/d, /v\

By induction hypothesis, there is an echelon tree for W; (i) O W (i2)

Repeating the previous argument, we obtain the second subtree: A A

September 4, 2025 42




Claim (stronger version). Let W c R%1%"X@¢ he 3 subspace. Let @ € (0,1] be such that

1-a)>1—-dim(W)/d,--d,

Then, there exists an echelon tree for W such that every node at level i has at least an; children.

Suppose we apply this procedure for t times

The subspace becomes (D& Wl @G

Wiiq :={TEW|T(el-j,:,...,:)=0Vj€[t]} A A ...A

o~ th+1 - R(dl—t)d2Xd3X"'Xd£

And we can check the condition:

1 — dim(Wt+1) _ 1-— dlm(W)/dl e d{) < (1 B a)f < (1 _ a)f—l
(dl_t)dz"'d,g 1_t/d1 1_t/d1

Hence, we can add new subtrees until t > ad;. Then, the root has ad; children and it is an echelon tree
of height £ A
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