CS 59300 – Algorithms for Data Science Classical and Quantum approaches

Lecture 3 (09/04)

Tensor Methods (III)

https://ruizhezhang.com/course_fall_2025.html

Recap: under-complete tensor decomposition

Let $T \in \mathbb{R}^{d \times d \times d}$ be a (symmetric) 3-tensor of the following form:

$$T = \sum_{i=1}^{k} \lambda_i u_i \otimes u_i \otimes u_i$$

- Jennrich's algorithm has good theoretical properties (exact recovery, stability, ...) as well as some practical concerns (not noise robust in practice, efficiency, ...)
- Tensor power method is a more practical approach while also has some theoretical guarantees
- However, there's still a big gap between theory and practice
 - \rightarrow Theory requires $k \leq d$ (under-complete regime)
 - ightarrow Tensor power methods still seem to work for $d < k < d^{1.5}$, at least when $\{u_i\}$ are random

Over-complete tensor decomposition

$$T = \sum_{i=1}^k \lambda_i u_i \otimes u_i \otimes u_i$$

Can we find the decomposition of a tensor of rank $k \gg n$ in polynomial time?

A more basic question: when is a rank-k decomposition unique?

- Jennrich, Harshman: when $\{u_i\}$ are linearly independent $(k \le d)$
- Kruskal: if every d columns of U are linearly independent, then the uniqueness holds when

$$k \le \frac{3}{2}d - 1$$

However, this result is non-algorithmic

• Chiantini-Ottaviani: Uniqueness of 3-tensors of rank $k \le d^2/3$ generically

all except a measure zero set

Joseph Kruskal (1928-2010)

Over-complete tensor decomposition

From computational complexity perspective,

- It is **NP**-hard to decompose a tensor with rank $k \ge 6d$ in the worst-case
- Constructing an explicit 3-tensor with rank $\Omega(d^{1+\epsilon})$ will imply breakthrough in circuit lower bounds. The best-known rank bound for an explicit 3-tensor is only $3d O(\log d)$

Today's plan:

Algorithm for decomposing higher-order tensors

Beyond worst-case analysis for over-complete tensor decomposition

Higher-order tensors decomposition

Suppose

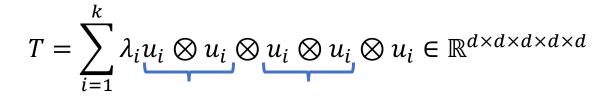
$$T = \sum_{i=1}^{k} \lambda_i \underline{u_i \otimes u_i} \otimes \underline{u_i \otimes u_i} \otimes u_i \in \mathbb{R}^{d \times d \times d \times d \times d}$$

$$T = \sum_{i=1}^{k} \lambda_i \operatorname{vec}(u_i \otimes u_i) \otimes \operatorname{vec}(u_i \otimes u_i) \otimes u_i \in \mathbb{R}^{d^2 \times d^2 \times d}$$

Why do higher-order tensors help with decomposition?

Higher-order tensors decomposition

Suppose



$$T = \sum_{i=1}^{k} \lambda_i \text{vec}(u_i \otimes u_i) \otimes \text{vec}(u_i \otimes u_i) \otimes u_i \in \mathbb{R}^{d^2 \times d^2 \times d}$$

Observation:

- Jennrich's algorithm requires $\{vec(u_i \otimes u_i)\}$ are linearly independent
- ${
 m vec}(u_i \otimes u_i)$ is a d^2 -dimensional vector, so it is possible to handle even $k \sim d^2$

Counterexample

Hope: $vec(u_i \otimes u_i)$ is a d^2 -dimensional vector, so it is possible to handle even $k \sim d^2$

Claim. Let $\{a_i\}_{i\in[d]}$ and $\{b_i\}_{i\in[d]}$ be two sets of orthonormal basis for \mathbb{R}^d . Then, $\{\operatorname{vec}(a_i\otimes a_i),\operatorname{vec}(b_i\otimes b_i)\}_{i\in[d]}$

are linearly dependent.

Proof.

Note that

$$\sum_{i} \operatorname{vec}(a_{i} \otimes a_{i}) = \sum_{i} a_{i} a_{i}^{\mathsf{T}} = I = \sum_{i} \operatorname{vec}(b_{i} \otimes b_{i})$$

Counterexample

Hope: $vec(u_i \otimes u_i)$ is a d^2 -dimensional vector, so it is possible to handle even $k \sim d^2$

Claim. Let $\{a_i\}_{i\in[d]}$ and $\{b_i\}_{i\in[d]}$ be two sets of orthonormal basis for \mathbb{R}^d . Then, $\{\operatorname{vec}(a_i\otimes a_i),\operatorname{vec}(b_i\otimes b_i)\}_{i\in[d]}$

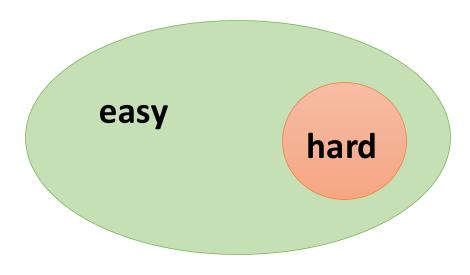
are linearly dependent.

- Dimension does not grow multiplicatively in worst case
- But bad examples are pathological and hard to construct

NP-hardness results for the worst-case instances are too pessimistic

Average-case analysis:

- Showing that for a random instance, the probability that it is hard is small
- Examples: 3-SAT, graph coloring, clique finding, compressed sensing, etc.
- Random tensor decomposition (u_i sampled from \mathbb{S}^{d-1})
 - **Chiantini-Ottaviani:** Unique decomposition for rank $k \leq d^2$
 - * Ma et al, Ding et al: Polynomial time algorithms for $k \sim d^{1.5}$



Problem instance space

"However, average-case analysis may be unconvincing as the inputs encountered in many application domains may bear little resemblance to the random inputs that dominate the analysis."

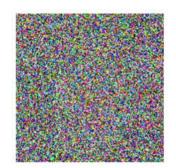
(Spielman-Teng, 2003)

Smoothed analysis

- To explain why Simplex algorithm solves LPs efficiently in practice
- Worst-case instances + Random noise perturbation

Worst-case: $\max_{x} T(x)$

Smoothed analysis: $\max_{x} \operatorname{avg}_{r} T(x + \epsilon r)$



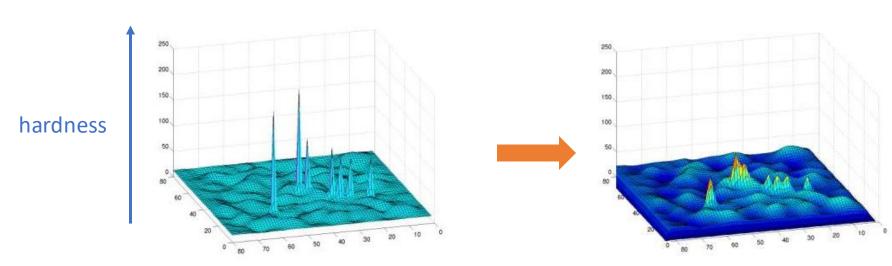
Average-case: avg T(r)

"However, average-case analysis may be unconvincing as the inputs encountered in many application domains may bear little resemblance to the random inputs that dominate the analysis."

(Spielman-Teng, 2003)

Smoothed analysis

- To explain why Simplex algorithm solves LPs efficiently in practice
- Worst-case instances + Random noise perturbation

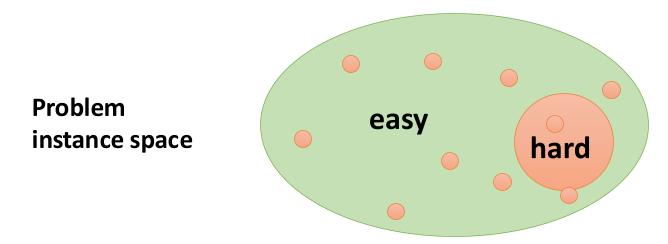


"However, average-case analysis may be unconvincing as the inputs encountered in many application domains may bear little resemblance to the random inputs that dominate the analysis."

(Spielman-Teng, 2003)

Smoothed analysis

- To explain why Simplex algorithm solves LPs efficiently in practice
- Worst-case instances + Random noise perturbation



Smoothed analysis of tensor decomposition

Smoothed analysis model:

- $\rho > 0$ the smoothing parameter, k the rank, ℓ the order of tensor
- Let $u_i^{\prime(j)} \in \mathbb{R}^d$ be an arbitrary vector for $i \in [k]$, $j \in [\ell]$ (picked by nature)
- Sample $u_i^{(j)} = u_i'^{(j)} + \frac{\rho}{\sqrt{d}} g_i^{(j)}$ for $g_i^{(j)} \sim \mathcal{N}(0, I)$ ρ -perturbation
- Observe $T = \sum_{i \in [k]} u_i^{(1)} \otimes \cdots \otimes u_i^{(\ell)} + \text{small noise}$

This is different from elements of T being randomly perturbed

- Smoothed model uses $\mathcal{O}(kld)$ bits of randomness, while randomly perturbing T uses $\mathcal{O}(d^\ell)$ bits of randomness
- An efficient algorithm for the element-wise perturbation model would imply a randomized algorithm for worst-case instances — which is considered very unlikely.

Main theorem of this lecture

Theorem (Bhaskara-Charikar-Moitra-Vijayraghavan, 2014).

Let $k \leq d^{\lfloor (\ell-1)/2 \rfloor}/2$. There exists an algorithm that takes as input an ℓ -tensor in smoothed analysis model and runs in time $(d/\rho)^{\mathcal{O}(\ell)}$ to recover the decomposition, with probability 1-1/2 uperpoly d over the randomness of $g_i^{(j)}$.

- This result becomes non-trivial when $\ell \geq 5$
- When ρ is small, it is close to a worst-case instance; when ρ is large, it is close to an average-case instance
- The failure probability is important in smoothed analysis, since it essentially describes the fraction of points around any given point that are bad

Using higher order tensors

$$T' = \sum_{i} \operatorname{vec}(u_i \otimes v_i) \otimes \operatorname{vec}(w_i \otimes x_i) \otimes y_i$$

Stability guarantee of Jennrich's algorithm

Theorem 3.1. Suppose we are given tensor $\widetilde{T} = T + E \in \mathbb{R}^{m \times n \times p}$, where T has a decomposition $T = \sum_{i=1}^k u_i \otimes v_i \otimes w_i$ satisfying the following conditions:

- 1. Matrices $U = (u_i : i \in [k]), V = (v_i : i \in [k])$ have condition number at most κ ,
- 2. For all $i \neq j$, $\|\frac{w_i}{\|w_i\|} \frac{w_j}{\|w_i\|}\|_2 \geq \delta$.
- 3. Each entry of E is bounded by $||T||_F \cdot \varepsilon/poly(\kappa, \max\{n, m, p\}, \frac{1}{\delta})$.

Then the Algorithm 1 on input \widetilde{T} runs in polynomial time and returns a decomposition $\{(\widetilde{u}_i, \widetilde{v}_i, \widetilde{w}_i) : i \in [k]\}$ s.t. there is a permutation $\pi : [k] \to [k]$ with

$$\forall i \in [k], \quad \|\widetilde{u}_i \otimes \widetilde{v}_i \otimes \widetilde{w}_i - u_{\pi(i)} \otimes v_{\pi(i)} \otimes w_{\pi(i)}\|_F \leq \varepsilon \|T\|_F.$$

Using higher order tensors

$$T' = \sum_{i} \operatorname{vec}(u_i \otimes v_i) \otimes \operatorname{vec}(w_i \otimes x_i) \otimes y_i$$

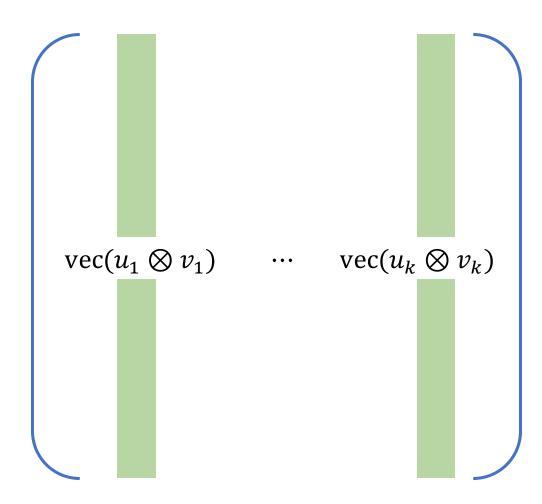
Stability guarantee of Jennrich's algorithm

• We need to show that $\{vec(u_i \otimes v_i)\}\$ are robustly linearly independent

Using higher order tensors

Khatri-Rao product

- $U, V \in \mathbb{R}^{d \times k}$
- $U \odot V \in \mathbb{R}^{d^2 \times k}$



Main step

$$\left(\widetilde{U}^{(a)}\right)_{ij} \coloneqq \left(U^{(a)}\right)_{ij} + \frac{\rho}{\sqrt{d}} \cdot \mathcal{N}(0,1)$$

Proposition. Let $k \leq (1 - \delta)d^{\ell}$. Given any $U^{(1)}, U^{(2)}, ..., U^{(\ell)} \in \mathbb{R}^{d \times k}$ then for their random ρ -perturbations, we have

$$\Pr\left[\sigma_k\left(\widetilde{U}^{(1)}\odot\cdots\odot\widetilde{U}^{(\ell)}\right)<(\rho/d)^{\mathcal{O}(\ell)}\right]\leq k\exp\left(-\Omega_\ell(d)\right)$$

Theorem (Bhaskara-Charikar-Moitra-Vijayraghavan, 2014).

Let $k \leq d^{\lfloor (\ell-1)/2 \rfloor}/2$. There exists an algorithm that takes as input an ℓ -tensor in smoothed analysis model and runs in time $(d/\rho)^{\mathcal{O}(\ell)}$ to recover the decomposition, with probability $1-1/\sup(d)$ over the randomness of $\{g_{i,j}\}$.

$$T = \sum_{i} \widetilde{u}_{i}^{(1)} \otimes \cdots \otimes \widetilde{u}_{i}^{((\ell-1)/2)} \otimes \widetilde{u}_{i}^{((\ell-1)/2+1)} \otimes \cdots \otimes \widetilde{u}_{i}^{(\ell-1)} \otimes \widetilde{u}_{i}^{(\ell)}$$

$$d^{\lfloor (\ell-1)/2 \rfloor} \times k$$

$$\times k$$

Main step

$$\left(\widetilde{U}^{(a)}\right)_{ij} \coloneqq \left(U^{(a)}\right)_{ij} + \frac{\rho}{\sqrt{d}} \cdot \mathcal{N}(0,1)$$

Proposition. Let $k \leq (1 - \delta)d^{\ell}$. Given any $U^{(1)}, U^{(2)}, \dots, U^{(\ell)} \in \mathbb{R}^{d \times k}$ then for their random ρ -perturbations, we have

$$\Pr\left[\sigma_k\left(\widetilde{U}^{(1)}\odot\cdots\odot\widetilde{U}^{(\ell)}\right)<(\rho/d)^{\mathcal{O}(\ell)}\right]\leq k\exp\left(-\Omega_\ell(d)\right)$$

Proof strategy:

- The least singular value can be hard to handle directly
- We can bound leave-one-out distance as an alternative

Leave-one-out distance

Given a matrix $M \in \mathbb{R}^{d \times k}$, the leave-one-out distance of M is

$$\ell(M) = \min_{i \in [k]} \|\Pi_{-i}^{\perp} M_i\|$$

where Π_{-i}^{\perp} is the orthogonal projection to span $(\{M_j: j \neq i\})$

The leave-one-out distance is closely related to the least singular value:

Lemma. For any matrix $M \in \mathbb{R}^{d \times k}$, we have

$$\frac{\ell(M)}{\sqrt{k}} \le \sigma_{\min}(M) \le \ell(M)$$

Leave-one-out distance

Lemma. For any matrix $M \in \mathbb{R}^{d \times k}$, we have

$$\frac{\ell(M)}{\sqrt{k}} \le \sigma_{\min}(M) \le \ell(M)$$

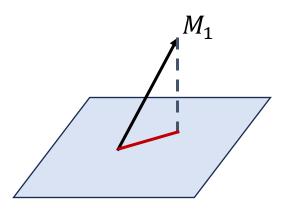
Proof.

- Let u be the least singular vector so that $\|Mu\| = \sigma_{\min}(M)$
- Wlog, suppose u_1 is the entry with the largest magnitude, so $|u_1| \ge \frac{1}{\sqrt{k}}$

$$\ell(M) \le \|\Pi_{-1}^{\perp} M_1\| = \inf_{v \in \text{span}(M_2, \dots, M_k)} \|M_1 - v\|$$

$$\le \|M_1 + \sum_{i \ge 1} \frac{u_i}{u_1} M_i\| = \frac{1}{|u_1|} \|Mu\| \le \frac{\sigma_{\min}(M)}{\sqrt{k}}$$

The lemma is then proved



Main step

Proposition. Let $k \leq (1 - \delta)d^{\ell}$. Given any $U^{(1)}, U^{(2)}, \dots, U^{(\ell)} \in \mathbb{R}^{d \times k}$ then for their random ρ -perturbations, we have

$$\Pr\left[\sigma_k\left(\widetilde{U}^{(1)}\odot\cdots\odot\widetilde{U}^{(\ell)}\right)<(\rho/d)^{\mathcal{O}(\ell)}\right]\leq k\exp\left(-\Omega_\ell(d)\right)$$

Using the lemma, it suffices to prove:

$$\Pr \Big[\ell \Big(\widetilde{U}^{(1)} \odot \cdots \odot \widetilde{U}^{(\ell)} \Big) < \sqrt{k} \cdot (\rho/d)^{\mathcal{O}(\ell)} \Big] \le k \exp \Big(-\Omega_{\ell}(d) \Big)$$

$$\Pr\left[\ell\left(\widetilde{U}^{(1)} \odot \cdots \odot \widetilde{U}^{(\ell)}\right) < (\rho/d)^{\ell}\right] \le k \exp\left(-\Omega_{\ell}(d)\right)$$

Our goal:

$$\ell \big(\widetilde{U}^{(1)} \odot \cdots \odot \widetilde{U}^{(\ell)} \big) < (\rho/d)^{\ell}$$

By the definition of the leave-one-out distance, we can consider each column:

$$\left\| \prod_{-i}^{\perp} \left(\tilde{u}_i^{(1)} \otimes \tilde{u}_i^{(2)} \otimes \cdots \otimes \tilde{u}_i^{(\ell)} \right) \right\| \leq (\rho/d)^{\ell} \quad \forall i \in [k]$$

• Both Π_{-i}^{\perp} and $\tilde{u}_{i}^{(1)} \otimes \tilde{u}_{i}^{(2)} \otimes \cdots \otimes \tilde{u}_{i}^{(\ell)}$ are random, but independent!

Projection lemma. Let $W \subset \mathbb{R}^{d^{\times \ell}}$ be an arbitrary subspace of dimension at least δd^{ℓ} . Given any $x_1, \dots, x_{\ell} \in \mathbb{R}^d$, then their random ρ -perturbations $\tilde{x}_1, \dots, \tilde{x}_{\ell}$ satisfy

$$\Pr \big[\| \Pi_{\mathbf{W}} (\tilde{x}_1 \otimes \cdots \otimes \tilde{x}_\ell) \| \leq (\rho/d)^\ell \big] \leq \exp \big(-\Omega(d) \big)$$

The proposition follows from Projection Lemma + union bound over all columns

Projection lemma ($\ell = 1$). Let $W \subset \mathbb{R}^d$ be a subspace of dimension at least δd . If $\tilde{u} = u + \frac{\rho}{\sqrt{d}} \mathcal{N}(0, I)$, then

$$\Pr[\|\Pi_W \tilde{u}\| < \mathcal{O}(\rho/d)] \le \exp(-\Omega(d))$$

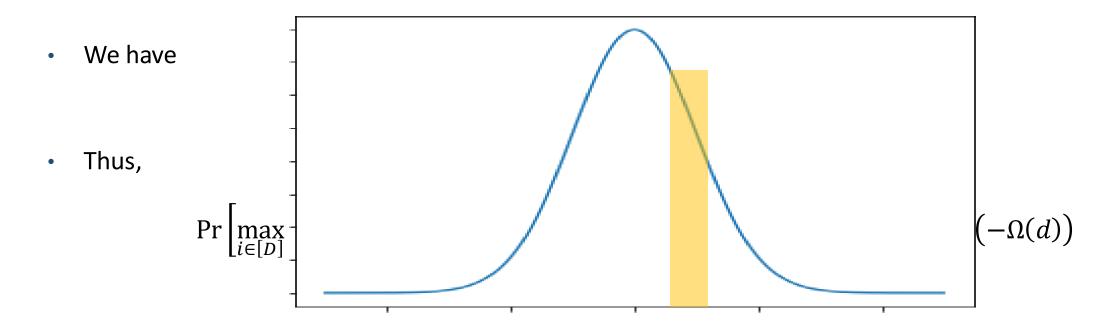
Proof (v1).

- Let $w_1, ..., w_D$ be an orthonormal basis for W
- Then

$$\|\Pi_{W}\tilde{u}\| = \|(\langle w_1, \tilde{u} \rangle, \dots, \langle w_D, \tilde{u} \rangle)\| \ge \max_{i \in [D]} |\langle w_i, \tilde{u} \rangle|$$

• $\langle w_i, \tilde{u} \rangle = \langle w_i, u \rangle + \frac{\rho}{\sqrt{d}} \mathcal{N}(0,1)$ are independent Gaussians with arbitrary means and variance $\frac{\rho^2}{d}$

Fact (Gaussian anti-concentration). For $g \sim \mathcal{N}(0,1)$ and for any interval $I \subset \mathbb{R}$ of length t, $\Pr[g \in I] \leq O(t)$



However, this approach does not generalize to higher order case.

Lemma ($\ell=1$). Let $W \subset \mathbb{R}^d$ be a subspace of dimension at least δd . If $\tilde{u}=u+\frac{\rho}{\sqrt{d}}\mathcal{N}(0,I)$, then $\Pr[\|\Pi_W \tilde{u}\| < \mathcal{O}(\rho/d)] \leq \exp(-\Omega(d))$

$$\|\Pi_W \tilde{u}\| = \sup_{w \in W: \|w\| = 1} |\langle w, \tilde{u} \rangle|$$

- Instead of choosing an orthonormal basis, we choose a "row echelon" basis for W:
 - ► All $|\star|$'s ≤ 1
 - $||w_i|| \le \sqrt{d}$
 - Construction is similar to Gaussian elimination (permuting the coordinates if needed)

$$w_1 = [\ 1 \ \ \, \star \ \ \, \star \ \ \, \star \ \ \, \star \]$$
 $w_2 = [\ 0 \ \ \, 1 \ \ \, \star \ \ \, \star \]$
 $w_3 = [\ 0 \ \ \, 0 \ \ \, 1 \ \ \, \star \ \ \, \star \]$
 $w_4 = [\ 0 \ \ \, 0 \ \ \, 0 \ \ \, 1 \ \ \, \star \]$

$$w_1 = [\ 1 \quad \star \quad \star \quad \star \quad \star \]$$
 $w_2 = [\ 0 \quad 1 \quad \star \quad \star \quad \star \]$
 $w_3 = [\ 0 \quad 0 \quad 1 \quad \star \quad \star \]$
 $w_4 = [\ 0 \quad 0 \quad 0 \quad 1 \quad \star \]$

- Each w_i has a non-negligible component orthogonal to the span of $w_{i+1}, ..., w_D$
- We will "reveal" $\langle w_D, \widetilde{u} \rangle, \langle w_{D-1}, \widetilde{u} \rangle, \dots, \langle w_1, \widetilde{u} \rangle$ one at a time
- $\langle w_i, \tilde{u} \rangle = \langle w_i, u \rangle + \frac{\rho}{\sqrt{d}} (g_i) + \sum_{j>i} (w_i)_j g_j$ "left-over" randomness

$$\Pr\left[|\langle w_i, \tilde{u} \rangle| < \mathcal{O}\left(\frac{\rho}{\sqrt{d}}\right) \,\middle|\, \langle w_{i+1}, \tilde{u} \rangle, \dots, \langle w_D, \tilde{u} \rangle\right] \leq \sup_{t \in \mathbb{R}} \Pr_{g_i \sim \mathcal{N}(0,1)} \left[\frac{\rho}{\sqrt{d}} \,\middle|\, g_i - t \middle\mid \leq \mathcal{O}\left(\frac{\rho}{\sqrt{d}}\right)\right] = \mathcal{O}(1)$$

Hence,

$$\Pr\left[|\langle w_i, \tilde{u} \rangle| < \mathcal{O}(\rho/\sqrt{d}) \, \forall i \in [D]\right] = \exp(-\Omega(d))$$

• Since $||w_i|| \le \sqrt{d}$, we get that

$$\Pr[\|\Pi_W \tilde{u}\| \le \mathcal{O}(\rho/\mathbf{d})] = \exp(-\Omega(\mathbf{d}))$$

We loss a factor of \sqrt{d} , but this approach can generalize to $\ell>1$

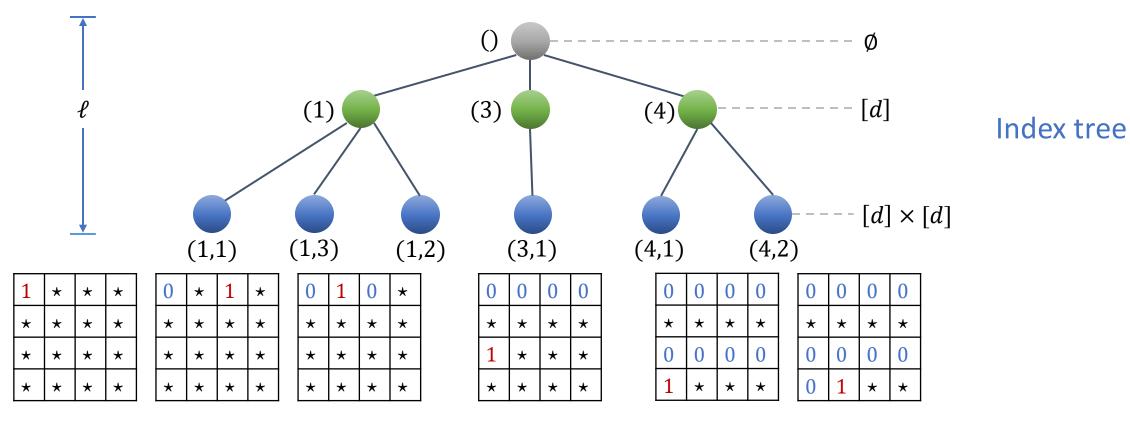
General case

Projection lemma. Let $W \subset \mathbb{R}^{d^{\times \ell}}$ be an arbitrary subspace of dimension at least δd^{ℓ} . Given any $x_1, \dots, x_{\ell} \in \mathbb{R}^d$, then their random ρ -perturbations $\tilde{x}_1, \dots, \tilde{x}_{\ell}$ satisfy

$$\Pr \big[\|\Pi_W (\tilde{x}_1 \otimes \cdots \otimes \tilde{x}_\ell)\| \leq (\rho/d)^\ell \big] \leq \exp \big(-\Omega(d) \big)$$

Proof strategy:

- We need to construct tensor version of "row echelon" basis $\{T_I\}$ for W
- Show that $|T_I(\tilde{x}_1, \dots, \tilde{x}_\ell)|$ is large with high probability



post-traversal ordering: (1,1) < (1,3) < (1,2) < (1) < (3,1) < (3) < (4,1) < (4,2) < (4)

An echelon tree for W is an index tree where each leaf I is additionally labeled by an element $T_I \in W$ such that

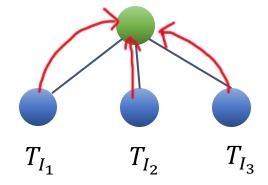
- $(T_I)_{I_1,...,I_{\ell}} = 1$
- For every $J \prec I$, $T_I(e_J,:) = 0$
- All $|\star|' s \le 1$ $T_I(e_{j_1}, ..., e_{j_{|J|}}, :, ..., :)$

Proof of the projection lemma via echelon tree

Claim (Echelon tree construction). Let $W \subset \mathbb{R}^{d^{\times \ell}}$ be a subspace of dimension at least δd^{ℓ} . Then, there exists an echelon tree for W such that every non-leaf node has at least $\frac{\delta}{2\ell}d$ children.

We'll show that this claim implies the projection lemma for a general $\ell>1$

- $||T_I||_F \le d^{\ell/2}$ for every leaf I. So it suffices to show that $|T_I(\tilde{x}_1, ..., \tilde{x}_\ell)| \ge (\rho/\sqrt{d})^\ell$ for some I w.h.p.
- We will fix \tilde{x}_ℓ , $\tilde{x}_{\ell-1}$, ..., \tilde{x}_1 one at a time, and simultaneously reduce the height of the tree by 1



$$T_J \coloneqq \arg\max |T(e_J)|$$

$$T = T_I(:, \tilde{x}_\ell)$$

Proof of the projection lemma via echeloph then tree is x-large if $|T_I(e_I)| \ge x$ for every leaf I

Claim. If we start with an x-large echelon tree, then the next echelon tree is $\frac{\rho}{\sqrt{d}}x$ -large

• For a fixed node J of level $\ell-1$, we want to prove that there exists a child node I such that

$$|T_I(e_J, \tilde{x}_\ell)| \ge \frac{\rho}{\sqrt{d}} x$$

• By the previous claim, J has $m \ge \frac{\delta}{2\ell}d$ children, with labels:

$$(J, i_1), (J, i_2), \dots, (J, i_m)$$

• Then, it is almost the same as baby lemma for $\ell=1$ and d'=m. Thus, we have

$$\Pr\left[\forall j \in [m]: \left| T_{I_j}(e_J, \tilde{x}_\ell) \right| \le \rho x / \sqrt{d} \right] \le \exp\left(-\Omega(m)\right) = \exp\left(-\Omega(d)\right)$$

• There are at most $d^{(\ell-1)}$ nodes at level $\ell-1$. By union bound, w.p. $\geq 1-d^{\ell-1}\exp\left(-\Omega(d)\right)$, the next echelon tree is $\frac{\rho}{\sqrt{d}}x$ -large, and the claim is proved

Proof of the projection lemma via echelon tree

Claim. If we start with an x-large echelon tree, then the next echelon tree is $\frac{\rho}{\sqrt{d}}x$ -large

Inductively, this implies that with probability at least

$$1 - \left(1 + d + \dots + d^{\ell-1}\right) \exp\left(-\Omega(d)\right) \ge 1 - d^{\ell} \exp\left(-\Omega(d)\right),$$

there exists some I in the echelon tree (which is also in W) such that

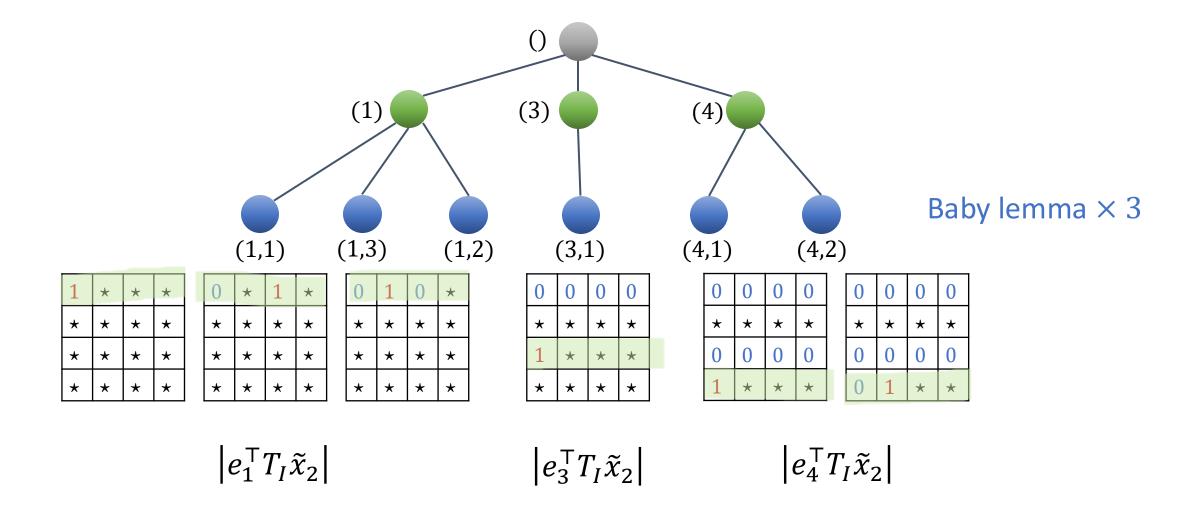
$$|T_I(\tilde{x}_1, \dots, \tilde{x}_\ell)| \ge (\rho/\sqrt{d})^\ell$$

Hence,

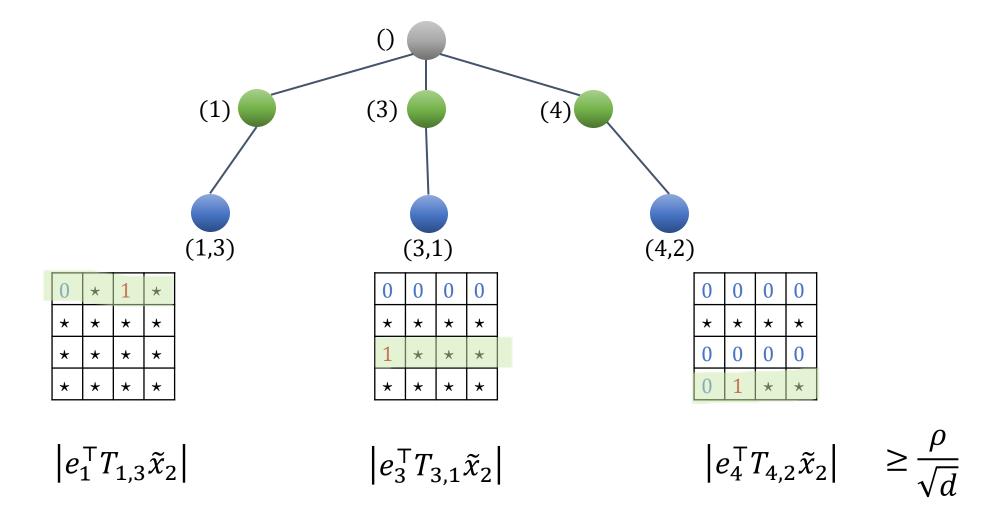
$$\Pr[\|\Pi_W(\tilde{x}_1 \otimes \cdots \otimes \tilde{x}_\ell)\| \le (\rho/d)^\ell] \le \exp(-\Omega(d))$$

which proves the projection lemma

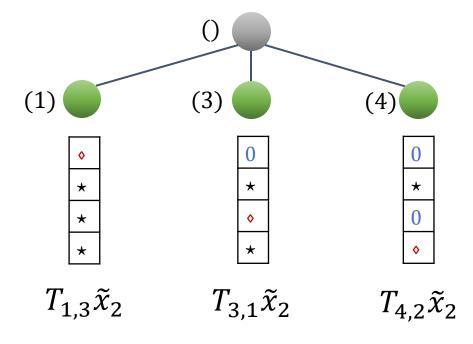
$\ell=2$ case



$\ell=2$ case



$\ell = 2$ case



Baby lemma:

$$\left| \tilde{x}_1^{\mathsf{T}} T_{3,1} \tilde{x}_2 \right| \ge \frac{\rho}{\sqrt{d}} \cdot \frac{\rho}{\sqrt{d}} = \frac{\rho^2}{d}$$

Constructing the echelon tree

Echelon tree construction

Claim (Echelon tree construction). Let $W \subset \mathbb{R}^{d^{\times \ell}}$ be a subspace of dimension at least δd^{ℓ} . Then, there exists an echelon tree for W such that every non-leaf node has at least $\frac{\delta}{2\ell}d$ children.

Claim (stronger version). Let $W \subset \mathbb{R}^{d_1 \times \cdots \times d_\ell}$ be a subspace. Let $\alpha \in (0,1]$ be such that $(1-\alpha)^\ell \geq 1 - \dim(W)/d_1 \cdots d_\ell$

Then, there exists an echelon tree for W such that every node at level i has at least αn_i children.

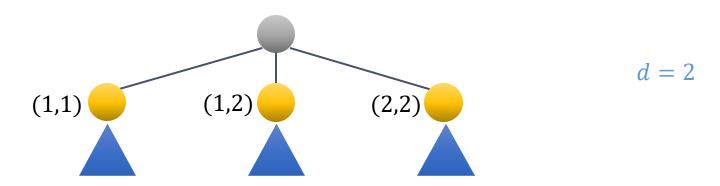
Then, there exists an echelon tree for W such that every node at level i has at least αn_i children.

Proof by induction over the height ℓ

- $\ell = 1$ is trivial (as proved in the baby lemma)
- Suppose $\ell-1$ holds. To "grow" one more level, we first flatten the first two dimensions, i.e.,

$$W \cong W' \subset \mathbb{R}^{\frac{d_1 d_2 \times d_3 \times \cdots \times d_\ell}{\ell - 1 \text{ levels}}}$$

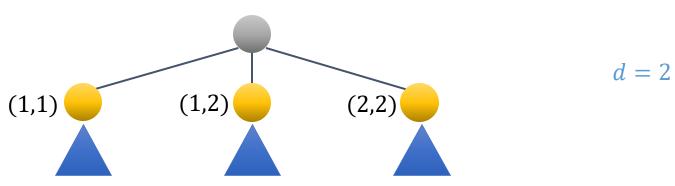
• Level-1 has $\geq \alpha d_1 d_2$ nodes (by induction hypothesis)



Then, there exists an echelon tree for W such that every node at level i has at least αn_i children.

Proof by induction over the height ℓ

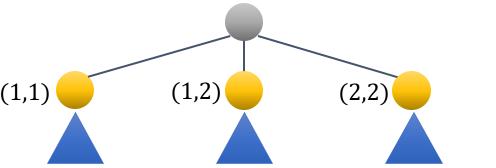
- $\ell = 1$ is trivial (as proved in the baby lemma)
- Suppose $\ell-1$ holds. To "grow" one more level, we first flatten the first two dimensions, i.e., $W\cong W'\subset \mathbb{R}^{d_1d_2\times d_3\times\cdots\times d_\ell}$
- Level-1 has $\geq \alpha d_1 d_2$ nodes (by induction hypothesis). At least αd_2 of them has the same first coordinate (by pigeonhole principle)



Then, there exists an echelon tree for W such that every node at level i has at least αn_i children.

Proof by induction over the height ℓ

- $\ell = 1$ is trivial (as proved in the baby lemma)
- Suppose $\ell-1$ holds. To "grow" one more level, we first flatten the first two dimensions, i.e., $W\cong W'\subset \mathbb{R}^{d_1d_2\times d_3\times\cdots\times d_\ell}$
- Level-1 has $\geq \alpha d_1 d_2$ nodes (by induction hypothesis). At least αd_2 of them has the same first coordinate (by pigeonhole principle)
- Remove the other nodes at level-1



d=2

Then, there exists an echelon tree for W such that every node at level i has at least αn_i children.

Proof by induction over the height ℓ

- $\ell = 1$ is trivial (as proved in the baby lemma)
- Suppose $\ell-1$ holds. To "grow" one more level, we first flatten the first two dimensions, i.e., $W\cong W'\subset \mathbb{R}^{d_1d_2\times d_3\times\cdots\times d_\ell}$
- Level-1 has $\geq \alpha d_1 d_2$ nodes (by induction hypothesis). At least αd_2 of them has the same first coordinate (by pigeonhole principle)
- Remove the other nodes at level-1
- Extract the first coordinate

This node has $\geq \alpha d_2$ children \triangle

d=2

Then, there exists an echelon tree for W such that every node at level i has at least αn_i children.

Consider the subspace

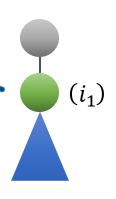
$$W_1 := \left\{ T \in W \middle| T(e_{i_1}, :, ..., :) = 0 \right\} \cong W_1' \subset \mathbb{R}^{(d_1 - 1)d_2 \times d_3 \times \cdots \times d_\ell}$$

• $\dim(W_1) = \dim(W) - d_2 \cdots d_\ell$ and

$$1 - \frac{\dim(W_1)}{(d_1 - 1)d_2 \cdots d_{\ell}} = 1 - \frac{\dim(W) - d_2 \cdots d_{\ell}}{(d_1 - 1)d_2 \cdots d_{\ell}}$$

$$= \frac{1 - \dim(W)/d_1 \cdots d_{\ell}}{1 - 1/d_1} \le \frac{(1 - \alpha)^{\ell}}{1 - 1/d_1} \le (1 - \alpha)^{\ell - 1}$$

• By induction hypothesis, there is an echelon tree for W_1



Then, there exists an echelon tree for W such that every node at level i has at least αn_i children.

Consider the subspace

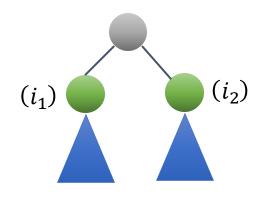
$$W_1 \coloneqq \left\{ T \in W \middle| T(e_{i_1}, :, \dots, :) = 0 \right\} \cong W_1' \subset \mathbb{R}^{(d_1 - 1)d_2 \times d_3 \times \dots \times d_\ell}$$

• $\dim(W_1) = \dim(W) - d_2 \cdots d_\ell$ and

$$1 - \frac{\dim(W_1)}{(d_1 - 1)d_2 \cdots d_{\ell}} = 1 - \frac{\dim(W) - d_2 \cdots d_{\ell}}{(d_1 - 1)d_2 \cdots d_{\ell}}$$

$$= \frac{1 - \dim(W)/d_1 \cdots d_{\ell}}{1 - 1/d_1} \le \frac{(1 - \alpha)^{\ell}}{1 - 1/d_1} \le (1 - \alpha)^{\ell - 1}$$

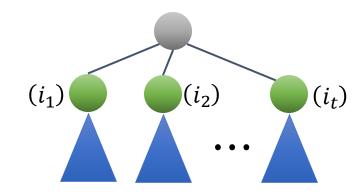
- By induction hypothesis, there is an echelon tree for W_1
- Repeating the previous argument, we obtain the second subtree:



Then, there exists an echelon tree for W such that every node at level i has at least αn_i children.

- Suppose we apply this procedure for t times
- The subspace becomes

$$W_{t+1} \coloneqq \left\{ T \in W \middle| T\left(e_{i_j}, :, ..., :\right) = 0 \; \forall j \in [t] \right\}$$
$$\cong W'_{t+1} \subset \mathbb{R}^{(d_1 - t)d_2 \times d_3 \times \cdots \times d_\ell}$$



And we can check the condition:

$$1 - \frac{\dim(W_{t+1})}{(d_1 - t)d_2 \cdots d_{\ell}} = \frac{1 - \dim(W)/d_1 \cdots d_{\ell}}{1 - t/d_1} \le \frac{(1 - \alpha)^{\ell}}{1 - t/d_1} \le (1 - \alpha)^{\ell - 1}$$

• Hence, we can add new subtrees until $t>\alpha d_1$. Then, the root has αd_1 children and it is an echelon tree of height ℓ